Fundamentals of Extrusion/Compounding

Melting Mechanisms: Single vs. Co-rotating Twin-screw Extruders

Gregory A. Campbell Castle Research Associates Jonesport, ME Paul Andersen Director, Process Technology Coperion Corporation Ramsey, New Jersey

- Single / Twin-screw compounding system overview
- Single Screw Melting Analysis
- Melting Mechanisms in the Single/Twin-screw Compounder
 - External Thermal Energy Transfer
 - Frictional Heat Build-up / Energy Transfer
 - Mechanical Deformation
 - Melt Stress Transfer
 - Thermal Homogenization
- Influential Variables
 - Machine Design i.e. screw configuration
 - Process Conditions Temperature, rpm, rate/rpm
 - Material Characteristics particle size, Tm, Melt viscosity
- Summary

- Single/Twin-screw compounding system overview
- Single Screw Melting Analysis
- Melting Mechanisms in the Single/Twin-screw Compounder
 - External Thermal Energy Transfer
 - Frictional Heat Build-up / Energy Transfer
 - Mechanical Deformation
 - Melt Stress Transfer
 - Thermal Homogenization
- Influential Variables
 - Machine Design i.e. screw configuration
 - Process Conditions Temperature, rpm, rate/rpm
 - Material Characteristics particle size, Tm, Melt viscosity
- Summary

Single-Screw Extruder

AK ULTRA

ZSK: Modular Design Drive power of 10 kW up to 12 MW for rates from 0.5 kg/h and 100 t/h

for screw elements and kneading blocks

Comparison of SSE & TSE Mechanisms

- Single/Twin-screw compounding system overview
- Single Screw Melting Analysis Objectives
- Melting Mechanisms in the Single/Twin-screw Compounder
 - External Thermal Energy Transfer
 - Frictional Heat Build-up / Energy Transfer
 - Mechanical Deformation
 - Melt Stress Transfer
 - Thermal Homogenization
- Influential Variables
 - Machine Design i.e. screw configuration
 - Process Conditions Temperature, rpm, rate/rpm
 - Material Characteristics particle size, Tm, Melt viscosity
- Summary

Single Screw Melting Analysis Objectives

- Demonstrate Basics of How Single Screw Extruder Melts
 - Initial Heating of Solids
 - Melt Encapsulates solid bed
 - Solid bed melts

Heat transfer

Viscous dissipation

- Propose new mechanism for solid bed breakup
 - **Dispersive Mixers**
 - **High Tech Screws**
- Develop a new model that is consistent with the data analysis
- Impact on Downstream Processing

- Twin-screw compounding system overview
- Single Screw Melting Analysis
- Melting Mechanisms in the Single/Twin-screw Compounder
 - External Thermal Energy Transfer
 - Frictional Heat Build-up / Energy Transfer
 - Mechanical Deformation
 - Melt Stress Transfer
 - Thermal Homogenization
- Influential Variables
 - Machine Design i.e. screw configuration
 - Process Conditions Temperature, rpm, rate/rpm
 - Material Characteristics particle size, Tm, Melt viscosity
- Summary

Solids Conveying

Single Screw

- Not Positive Displacement
- Rate Depends on Friction Force
 - Between Pellets and Barrel
 - Pellets and Screw Surface
- Pellets convey (in general) better than powder
 - Powder convey zone deeper channel
- TPU conveys faster than PE
 - PE convey zone channel depth greater
- No melting desired conveying zone

Twin-Screw

- Combined Non-Positive/Positive Displacement
- Rate Depend on Friction Force
 - Between feedstock and Barrel
 - Between feedstock particles
- Pellets convey (in general) better than powder
 - Powder convey zone greater pitch
 - Powder convey zone greater I/d

No melting permitted in solids convey zone

coperion

Pellets Pushed by Flight in Single Screw

Data taken at Eastman Chemical with the help of Dr. Doug Small Video available on Extrusion Division Web Site

Impact on solids conveying/back up before Melting Section of:

- a) particle size
- b) melting section restrictions

Solid to Melt Transition:

1) External Energy Transfer 2) Frictional Heat Build-up / Energy Transfer

Single Screw Geometric Specifications and Definitions

- <u>Specifications</u>
 - Diameter: 0.75 inch up to 8 inch (larger machines possible)
 - Length-to-Diameter (L/D) Ratio: 8 to 40 (flow path only)
 - Transition-Primary Melting Section
 Core Diameter Increases from Solids Conveying Diameter to Metering Diameter

Single Screw: Solid Bed Encapsulation - Reynolds Bearing Effect

Single Screw: Solid Bed Encapsulation - Reynolds Bearing Effect

Single Screw: Solid Bed Encapsulation - Reynolds Bearing Effect

Twin-screw: Melting via External Thermal Energy Transfer Pitfall: Premelting in Screw Bushings

coperion

Twin-screw: Melting via Frictional Heat Build-up / Energy Transfer Pitfall: Material Back up and melt in Screw Bushings

Twin-screw: Frictional Heat Build-up / Energy Transfer Prior to KB Pitfall: Material Back / Melt in Screw Bushings / Wear (Abrasive Feedstock)

Solid to Melt Transition:

Impact of Mechanical Deformation

ANTEC 2016 - May 23, 2016 - Page 21

Melting via Mechanical Deformation

ANTEC 2016 - May 23, 2016 - Page 22

Melting via Mechanical Deformation Experiments:

Melting via Mechanical Deformation Experiments: Radial Pressure Measurement vs. Axial Location

Five measurement points, 3 pressure and 2 temperature

Video

Melting Zone: Pressure profile – Wide Disc KB 500 ~ 500 bar 400 HDPE / 600 kg/hr/ 300 rpm **Standard radial clearance Active Pressure (Apex)** 300 200 100 0 300 (mm) 60 120 180 240 40 40 40 <u>kB 45°</u> 5/80 re 40 40 KB 45° 80 40U 80 5/80re

Idealized Layout of the Melting Zone

Solid to Melt Transition:

Impact of Stress Transfer

Solid to Melt Transition:

Single Screw Data Analysis Leads to New Melting Mechanism Hypothesis

Melting Slices from Tadmor and Kline

Figure 5.15 Cross sections obtained from cooling experiments. For additional information, see Tables 5.1 to 5.4.

Engineering Principles of Plasticating Extrusion, Tadmor and Klein, Krieger 1970

Quantitative Video Pixel Analysis of Bed Geometry Change

SOLID BED MELTING IN SINGLE SCREW EXTRUDERS -AN ALTERNATIVE FIRST ORDER MECHANISM -G. Campbell and Z. Tang ANTEC Paper 2004

Single Screw: Four Melting Zones Around Solid Bed

Melting Sequence Glass Barrel Extruder Stills from Video of Polyester melting

Qualitative New Melting Model

Qualitative Simulation Results

Solid Bed Goes to Zero Thickness when Viewed from Side

Melting Dissipation/Heat Transfer Zones

Quantitative Results Viscosity 880 Pa*S

 Bed Height 0.0 at 250 cm down channel

Only about 50% melting in W dimension

Quantitative Results Viscosity 220 Pa*S

Melt Film Thickness as Function of Viscosity

Location of Dissipation for New and Classical Melting

- New Analysis Melting length 240 cm
- Historic Melting Length 279 cm
- Melting Length **New Analysis** 16 % less

Model Parameter	New Analysis	Historical Analysis
Vectorial Velocity ,δC, cm/s	8.7	29.5
Vectorial velocity, δD , cm/s	20.3	2.4
Melting energy zone C, J/s	1140	1980
Melting energy zone E, J/s	480	0
Melting energy zone D, J/s	340	0
Melting energy zone B, J/s	20	0
Total melting energy, J/s	1980	1980

Summary: Single Screw Melting Process

- Melting occurs due to viscous energy dissipation in the melt films between the solid bed and the screw and barrel surfaces.
- Primary mixing occurs during the melting process.
- Melting progresses down the length of the transition section (melting section). About 80 % of the resin is melted at the barrel surface and the remaining 20 % at the screw root.
- At the barrel surface, the motion of the screw forces the new molten resin into Melt Pool
- At the screw surface, a pressure gradient exists that forces newly molten resin into the melt pool

Solid to Melt Transition:

Impact of Stress Transfer

Twin-screw Kneading Block Mixing

ANTEC 2016 - May 23, 2016 - Page 43

Twin-screw Melting Progression: Thermal Homogenization – Melt Stress Transfer

Twin-screw Melting Progression: Kneading Elements - Melt Stress Transfer

W... Staggering angle
S ... Width of the disk
T ... Transport
M ... Distributive mixing
K ... Minimal flow in full diameter elements

ANTEC 2016 - May 23, 2016 - Page 45

Twin-screw Melting Progression: Thermal Homogenization – Melt Stress Transfer

Video

Idealized Layout of the Melting Zone

Solid to Melt Transition:

Thermal Homogenization / Conduction Melting Residual Solids and Gels

Single Screw

Melting of the resin: primary method for Single Screw mixing

- The best mixing occurs in the melt film between the solid bed and the barrel wall.
- The shear stress is very high in the melt film.
- A secondary mixing section is generally needed for most applications.

Why is a secondary mixing required

 As a screw is rotated faster, a speed will be reached where solid resin is discharged – solid bed break-up

• Solids in the discharge can look like a poorly mixed system.

• A secondary mixer or solids trap is needed to finish the melting process.

• Increased Screw speed: Melting ~ 0.7 * Solid Pumping

Solid Bed Breakup / Unmelt Leaving Extruder

Cross-sectional views of extrudate samples at a letdown ratio of 100 to 1 of a white pigmented ABS resin with a black color concentrate for a melting-mixing experiment.

Why Solid Bed Breakup? Reasonable Question Given The Data Presented

- Solid Bed Gets Weak and Thin
- Shear Stress Under Bed
- Bed Breaks and Sends Unmelts Forward

Single Screw Melt Films

Barrel side

Screw side

Flow from melt Film D to the melt pool

confidence through partnership

b)

Degradation in Single Screw Due to Stagnation: Eddie Between the Flows

Degraded Resin at the Screw Root Where the Flow Streams Merge

Velocity in Solid Bed: Screw Surface in Gap Between Screw Core and Bed

Solid Bed Breakup due to Fluid Velocity generated surface shear stress

After Bed Break-Up: Conduction Dominated Melting

Maddock Style Mixers

Schematic for Maddock-style mixers. a) a mixer with the flutes aligned in the axial direction, b) an axial mixer with a pressure relief zones at the entry and exits, and c) a mixer with spiral flutes (courtesy of Jeff A. Myers of Robert Barr, Inc.).

Maddock Style Mixer

b) mixer cross section

The Melting Process Can Be Improved with Enhanced Screw Designs

Solid to Melt Transition:

Thermal Homogenization / Conduction Melting Residual Solids and Gels

Twin-Screw

Twin-screw Melting Progression: Thermal Homogenization – Low Viscosity Melt

Video

Twin-screw Melting Progression: Thermal Homogenization – Low Viscosity Melt

Melting Mechanisms: Single vs. Co-rotating Twin-screw Extruders

- Twin-screw compounding system overview
- Single Screw Melting Analysis
- Melting Mechanisms in the Twin-screw Compounder
 - External Thermal Energy Transfer
 - Frictional Heat Build-up / Energy Transfer
 - Mechanical Deformation
 - Melt Stress Transfer
 - Thermal Homogenization
- Influential Variables
 - Machine Design i.e. screw configuration
 - Process Conditions Temperature, rpm, rate/rpm
 - Material Characteristics particle size, Tm, Melt viscosity
- Summary

Melting Mechanisms: Impact of Screw Configuration Pressure profile – Wide Disc KB vs. Narrow Disc KB

Melting Mechanisms: Impact of Process Conditions DuPont ZSK 40mm EZ-Slide LDPE Pellet Melting Study

Melting Mechanisms: Impact of Process Conditions – RPM, Q/N LDPE/HDPE Pellet Melting – ZSK 40mm:P/T Mapping

Ref: Wetzel ANTEC 2002

LDPE Melting Mechanisms: Visualization in Conveying Zone Impact of Process Conditions – RPM, Q/N

27Kg/Hr. (60PPH), 60RPM Q/N = 1.0, Mode #1 High Fill

Ref: Wetzel ANTEC 2002

27Kg/Hr. (60PPH), 90 RPM Q/N = 0.67, Mode #2 Low Fill

Melting Mechanisms: Impact of Process Conditions - RPM LDPE/HDPE Pellet Melting – ZSK 40mm:P/T Mapping

Average Axial Pressure Change and IR Temperature

confidence through marthe 2017 C

ANTEC 2016 - May 23, 2016 - Page 69

LDPE Melting Mechanisms: Visualization in Conveying Zone Impact of Process Conditions – RPM, Q/N

coperion

LDPE Melting Mechanisms: Visualization in KB Zone Conditions: 60PPH/60RPM (Q/N = 1.0)

LDPE Melting Mechanisms: Visualization in KB Zone

Melting Mechanisms: Impact of Material Characteristics

Twin-screw Melting Mechanisms: Impact of Material Pressure profile – PE vs. N66

HDPE / 600 kg/hr/ 300 rpm **Active Pressure (Apex)**

PA66 / 550 kg/hr/ 250 rpm

confidence through partnership

ANTEC 2016 - May 23, 2016 - Page 74

Twin-screw Melting Mechanisms: Layout of the Melting Zone Impact of Particle Size and Machine Geometry

Melting Mechanisms: Using Heater Power to Assist Melting

Solid to Melt Transition: Impact on Downstream Processing Metering/Pressurization

Geometric Specifications and Definitions

Diameter: 0.75 inch up to 8 inch (larger machines possible)

Length-to-Diameter (L/D) Ratio: 8 to 40 (flow path only)

Meter Section Channel Height, 3 to 8 % of Diameter

Meter Screw Dimension Pressure Drop Relation Ship

- Single Screws don't built Pressure! They can push against a die restriction to very high pressures (higher than TSE)
- Meter Section Geometry resists flow from Die Pressure.
- Pressure induced flow is proportional to Meter Flight Height Cubed : H³
- Rotational induced flow is proportional to the Metering Channel Depth H
- Rotational and Pressure induced flows are proportional to Meter Flight Width: W
- Pressure induced flow is inversely proportional to Meter Length

Solid to Melt Transition: Impact on Downstream Processing Degradation / Long Residence Time

RTD – Single Screw

Carbon Specks and Gels in a Film Product

The degradation at the flight radii were caused by low flow or stagnant regions due to Moffat eddies

Flight Radii Size Recommendation

Screw	Flight radii to channel depth ratio	My Recommendation for
Section	Range	LLDPE resin
Solids	0.25	0.25
conveying	0.25	0.23
Transition section	Blend radii sizes from the solids	
	conveying section to the metering	Blend
	section.	
Metering	0.5 to 2.5	1 to 1.5

Summary: Single Screw Melting Process Solid Bed Breakup and Residence Time Issues

- Solid bed breakup, unmelt, is a result of flow induced stress under the thin weak almost melted solid.
- Unmelt can be homogenized using high shear mixers or High Performance Screws.
- Long Residence time is major cause black specks and gels.
- Screw channel should be designed to eliminate Moffat eddy.
- Meter section must be in control: full, with pressure gradient decreasing from the die to the melting zone.
- Screw does not build pressure, it resists pressure flow caused by the die pressure.

Summary: Twin-Screw Compounding Melting Mechanisms

Thank you very much for your attention.

Paul Andersen

Director, Process Technology

Coperion Corporation

Ramsey, New Jersey

paul.andersen@coperion.com

www.ZSK 101.com

ANTEC 2016 - May 23, 2016 - Page 87